Energy Conversion Factors

S No	Electricity/Fuel	Conversion factor	
1.	1 kWh	860 k Cal	
2.	1 Kg Coal/Coke	Gross calorific value as per suppliers (Coal	
		Company's) latest certificate	
3.	1 Kg Charcoal	6900 k Cal or as per suppliers latest certificate	
4.	1 Kg Furnace	10050 k Cal (Density = 0.9337 Kg/Liter) or as	
	Oil/RFO/LSHS/Naptha	per suppliers certificate	
5.	1 Kg HSD	11840 k Cal (Density = 0.7087 Kg/Liter) or as	
		per suppliers certificate	
6.	1 Kg Petrol	11,200 k Cal (Density = 0.7087 Kg/Liter) or as	
		per suppliers latest certificate	
7.	1 Kg Kerosene	11,110 k Cal (Density of SKO = 0.7782 Kg/Liter)	
		or as per suppliers latest certificate	
8.	1 Kg LPG	12,500 k Cal or as per suppliers latest	
		certificate	
9.	1 m ³ Natural Gas	8,000 – 10,500 k Cal/m³ (Actual calorific value	
		as per suppliers latest certificate may be	
		considered) In case of non issue of certificate	
		by the supplier, average of the range is 8,000	
		– 10,500 k Cal/m ³ may be considered)	

MTOE (Metric Tons of Oil Equivalent)

S No	Fuel	Formula for conversion into MTOE
1.	Electricity	KWh X 860/10 ⁷
2.	Solid Fuel	(Qty of solid fuel used in Kg X GCV of fuel in kCal/Kg)/10 ⁷
3.	Liquid Fuel	(Qty of liquid fuel used in Kg or liters X GCV of fuel in kCal/Kg or Liter)/10 ⁷
4.	Gaseous Fuel	(Qty of gaseous fuel used in Kg or Nm ³ X GCV of fuel in kCal/Kg or Nm ³)/10 ⁷

SAVINGS BY USE OF MORE EFFICIENT LAMPS

Existing Lamp	Replace by	Potential Energy Savings, %
GLS (incandescent)	Compact Fluorescent Lamp (CFL)	38 to 75
	High Pressure Mercury Vapour (HPMV)	45 to 54
	Metal Halide	66
	High Pressure Sodium Vapour (HPSV)	66 to 73
Standard Tube light (Argon)	Slim Tube light (Krypton)	9 to 11
	Tube light (Krypton)	31 to 61
	High Pressure Mercury Vapour (HPMV)	54 to 61
	Metal Halide	48 to 73
	High Pressure Sodium Vapour (HPSV)	48 to 84
Mercury Blended Lamp	High Pressure Mercury Vapour (HPMV)	41
High Pressure Mercury Vapour (HPMV) Metal Halide		37
	High Pressure Sodium Vapour (HPSV)	34 to 57
	Low Pressure Sodium Vapour (LPSV)	62
	High Pressure Sodium Vapour (HPSV)	35
	Low Pressure Sodium Vapour (LPSV)	42
High Pressure Sodium Vapour (HPSV)	Low Pressure Sodium Vapour (LPSV)	42

Cost Analysis of bulbs & CFL's

Parameters	100 Watt ordinary bulb	20 Watt CFL
Power consumption if used	0.5 Unit	0.1 Unit
for 5 hrs daily		
Power consumption if used	15.0 Units	3.0 units
for 5hrs daily for one month		
Power consumption per year	180 Units	36 Units
(365 days)		
Cost of electricity @ Rs	Rs 675	Rs 135
3.75/Unit		
Money saving per year by		Rs 540
using 20 Watt CFL		
Cost of lamp (Rs)	Rs 12	Rs 110
Average life of lamp	1000 Hrs	8000 Hrs

Comparison of Star Rated Refrigerator with Non Star rated Refrigerator (220 Liters)

S No	Parameter	Star Rated Refrigerator	Non Star Rated Refrigerator
1.	Cost	Rs 23,000/-	Rs 15,000/-
2.	Annual Electricity consumption	720 Units	1800 Units
3.	Annual Electricity savings	1,080 Units	l
4.	Annual Electricity Cost (@Rs 4.25/Unit)	Rs 3,060/-	Rs 7,650/-
5.	Annual Money Savings	Rs 4,590/-	
6.	Payback Period	2 -2.5 Years	

Comparison of Star Rated Air Conditioner with Non Star rated Air Conditioner (1.5 Tons)

S No	Parameter	Star Rated Refrigerator	Non Star Rated Refrigerator
1.	Cost	Rs 33,000/-	Rs 21,000/-
2.	Annual Electricity consumption	2400 Units	4050 Units
3.	Annual Electricity savings	1650 Units	
4.	Annual Electricity Cost (@Rs 4.25/Unit)	Rs 10,200/-	Rs 17213/-
5.	Annual Money Savings	Rs 7,013/-	
6.	Payback Period	1.5 – 1.75 Years	